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Epsilon-Delta Definitions of Limits: Intuition and Examples

Litong Deng

1 Introduction

Limits are the basis of differentiation and integration — the two fundamental operations of Calculus.
In this summary we will explore formal epsilon-delta definitions for different types of limits as well as
their intuitive meanings and verification processes.

2 Finite Limits

Definition. We say the limit lim f(z) = L if, for any ¢ > 0, there exists a 6 > 0 such that if
xr—rc
0<|z—e¢|l<d,then |f(x)— L] <e.

A wordless way of saying this is:

lim f(r) =L <= Ve>0,30 >0 st. 0< |z —¢|<d = |f(z)—L| <e.

r—cC

where L and c¢ are real numbers. Intuitively, this means that, for the limit to exist, we must be able
to find an arbitrarily small distance § between x and ¢ that guarantees that f(z) and L are less than
an arbitrarily small distance € apart.

Therefore, in order to verify a finite limit, we must find a § such that |f(z) — L| < e. We can write
¢ in terms of € in order to satisfy the inequality for every value of €. We explore what this means in
the following example.

Example 1. Prove that lim1(4x +1)=-3.
T——

Proof. In order to write ¢ in terms of €, we start by writing out |f(x) — L| < e:

[flz)—Ll<e = |[de+1—-(=-3)|<e
= [dx+4|<e
= 4z +1| <e
= |z +1| <e/4
Our inequality is now in the form |z — ¢| < §. We can now choose § = ¢/4 and substitute it back into
|z — | < ¢
|z —¢cl<d = |z —(—1)| <e/4
= |z +1| <e/4d
= 4z +1|<e
= [dz+4|<e
= |[do+1—-(-3)| <e
= |f(z)—L| <e.

We can choose a d such that 0 < |z —¢| < = |f(z) — L| < e. Therefore, lim1(4x +1)=-3. O
T——



0 is Not Unique

Example. Prove that lim 22 = 9.
r—3

Proof. We are looking for a value of § such that
|t —3|<d = |2 -9 <e
We can factor |22 — 9] as the difference of two squares to rewrite the statement as

[t —3|<d = |z +3|lx—3]<e¢
= dlz+3| <e.

By bounding the factor |z + 3| to a constant, we can express ¢ solely in terms of e. We make the
restriction! § < 1. Tt follows that

[r—3]<1 = —-1<ax+4+3<1
= o< z+3<T
= |z +3|<T.

Therefore,
|z = 3|z + 3] <T) <e

and it follows that we can choose § = €/7.

However, since we made the restriction 6 < 1, we must account for when € > 7, as that would make
0 > 1. Thus, we choose § to be the minimum of 1 and €¢/7, or § = min(1, /7). To verify the limit, we
assume that 0 < |z — 3| < §:

|z —3] <6 = |z — 3|z + 3] <d|z+ 3
= |z —-3|lz+3] <7
= |x2—9|<7-;

— |22 -9 <e

We can choose a d such that 0 < |z —¢| < = |f(z) — L| < e. Therefore, lin}3 2 =9. O
z—

3 Infinite Limits

Definition. We say the limit lim f(x) = oco? if, for any M > 0, there exists a § > 0 such that if
r—c
0 < |z —c¢|l <4, then f(z) > M.

Intuitively, we are saying that, for a limit to approach infinity, f(x) must be large than an arbitrarily
large value M when x and ¢ are an arbitrarily small distance J apart.

Similar to verifying a finite limit, we verify an infinite limit by choosing a § such that f(z) > M.
Just like how we wrote J in terms of € above, in the following examples we will write § in terms of M.

1
Example 2. Prove that lim — = oo.
z—0 21

1We can pick any constant as an upper bound for §, but we use 1 for convenience.
2Strictly speaking, we cannot say lim f(z) = oo, since infinity cannot be equal to anything. A more mathematically
Tr—rc

sound way of expressing the value of the limit would be to say that f(x) increases without bounds, or that it approaches
infinity.



Proof. In order to write ¢ in terms of M, we start by writing out f(xz) > M:

flz)>M = 12>M

2

= x

\

z2
1
M

=

=]
-

=

8
A

=)

Our inequality is now in the form |z — ¢| < d, so we choose ¢ = ﬁ
To verify the limit, we assume that 0 < |z — ¢| < , and substitute our choice of § = ﬁ into the

inequality:

O<|z—c|<d = Jz|<$¢

= 22 <
1 1
2R
1 < 1
) 1 )2
1 S 1
2 1
e
1
= 5 >M
x
= f(z) > M.
1
We can choose a ¢ such that 0 < |z —¢| < = f(x) > M. Therefore, hn})—2 = 0. O
—0
3
Example 3. Prove that hm — = .
1)

Proof. We once again start by writing out f(x) > M in order to write ¢ in terms of M:

flx)>M = W>M

3
= —> (x —1)?

:>y/ >z —1
—1<q/—.
— T < M

Our inequality is now in the form |z — ¢| < §, so we choose § = %



We assume that 0 < [z — c| < 4, and substitute our choice of § = /- into the inequality:

O<|z—c|<d = |Jx—1] <
= (z—-1)2 <
11

(x—1)2 " §2
1 1
(x—1)?

(
ot
@-12~ 2%

1 M
(x—1)2 " 3

3
7(x_1)2>M
= f(z) > M.

3
We can choose a ¢ such that 0 < |z —¢| < = f(x) > M. Therefore, lim1 o1z = 0. O
z—1 (x —

4 Limits at Infinity

Definition. We say that lim f(x) = L if, for any ¢ > 0, there exists an M > 0 such that, if z > M,
T—r00
then |f(z) — L| < e.

Intuitively, we say that the limit of a function exists at infinity if the distance between f(z) and L
is less than an arbitrarily small distance € when x is greater than an arbitrarily large value M.
To verify limits at infinity, we start with |f(z) — L| < € and rearrange the inequality algebraically
until it fits the form x > M.
1
Example 4. Prove that lim — = 0.

T—00 I

Proof. We start with |f(z) — L| < e:
1
|f(z)— Ll <e = ‘m0‘<e
1
- —-<u
€

Now that our inequality is in the form = > M, we can choose M = % 3.
We assume = > M > 0 and substitute M = % into the inequality:

1
r>M = x> —
€
1
= —<e
X
‘1 ‘
— |——0|<e
X
= |f(z)—L| <e.

1
We can choose an M such that x > M = |f(z) — L| < e. Therefore, lim — = 0. O

T—00 I

6x + 2
E le 5. P that li =
xample rove that lim 57 1 8

3Since € is an infinitesimal, % is a value greater than any real number, which makes sense since we intuitively interpret
M as an arbitrarily large value.



Proof. We start with |f(z) — L| < e:

6x + 2
[flz)— L <e = 2$+83'<6
. 6x—|—2_3(2x+8)’
2x + 8 20 + 8
. 6x+2—6x—24‘
2x + 8
B N
2 + 8

Since we want > M > 0, we can assume x > 0 to drop the absolute value.

= 22 2 8
2x+8<€ < €(2z+8)

= 22 < 2ex + 8¢
— 22— 8¢ < 2ex
22 — 8¢
2¢

=

<.

22-8¢ We now assume® z > M = 22-5¢ to prove that |f(z) — L| < e.

We can choose M = o

22 — 8¢
2e
= 2ex > 22 — 8¢
2ex + 8e > 22
e(2x + 8) > 22
22
20+ 8
—22
20+ 8
6x + 2
2z 4+ 8
|f(x) — L| <e.

r>M — x>

€>

<

—3‘<e

6 2
We can choose an M such that x > M = |f(z) — L| < e. Therefore, lim rhe_ 3
z—00 2T + 8

5 Infinite Limits at Infinity

Definition. We say the limit lim f(z) = oo if, for any M > 0, there exists an N > 0 such that if
Tr—r0o0
x> N, then f(z) > M.

We can combine the definitions for infinite limits and limits at infinity into a definition for a limit
that increases without bound as the independent variable increases without bound. Intuitively, if f(z)
is greater than an arbitrarily large value M when z is greater than an arbitrarily large value N, f(x)
has an infinite limit at infinity.

To verify these types of limits, we start with f(x) > M and rearrange the inequality into the form
x> N.

Example 6. Prove that lim (4x 4+ 1) = oc.
Tr—r00

4We once again observe that % approaches infinity since € is an infinitesimal.



Proof. We start with f(z) > M:

f@)>M = 4dz+1>M
= 4dz>M-1

S M—-1
== =z .
4
Therefore, we choose N = %. We assume z > N and substitute N =
M-1
>N = z> 1

= 4dx>M-1
= 4dorx+1>M
= f(z) > M.

M—1

4

into the inequality:

We can choose an N such that z > N = f(z) > M. Therefore, lim (42 + 1) = occ.
T—r 00

11
Example 7. Prove that lim z+3 =

T—r00

Proof. We start with f(z) > M:

11z +3
7
Nx+3>"TM
11z >7M -3
™™ —3

— > .
x 11

fl@)y>M = > M

=
=

TM =5
11

Therefore, we choose N =

™ — 3
11
1l >7TM -3
MM +3>TM
11z +3

>N — x>

=
=

- > M

= f(z) > M.

We can choose an N such that z > N = f(z) > M. Therefore, lim

T—0o0

3. We assume z > N and substitute N =

TM—

11

3

into the inequality:

11z +3
=00
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