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Epsilon-Delta Definitions of Limits: Intuition and Examples

Litong Deng

1 Introduction

Limits are the basis of differentiation and integration — the two fundamental operations of Calculus.
In this summary we will explore formal epsilon-delta definitions for different types of limits as well as
their intuitive meanings and verification processes.

2 Finite Limits

Definition. We say the limit lim
x→c

f(x) = L if, for any ϵ > 0, there exists a δ > 0 such that if

0 < |x− c| < δ, then |f(x)− L| < ϵ.

A wordless way of saying this is:

lim
x→c

f(x) = L ⇐⇒ ∀ ϵ > 0,∃ δ > 0 s.t. 0 < |x− c| < δ =⇒ |f(x)− L| < ϵ.

where L and c are real numbers. Intuitively, this means that, for the limit to exist, we must be able
to find an arbitrarily small distance δ between x and c that guarantees that f(x) and L are less than
an arbitrarily small distance ϵ apart.

Therefore, in order to verify a finite limit, we must find a δ such that |f(x)−L| < ϵ. We can write
δ in terms of ϵ in order to satisfy the inequality for every value of ϵ. We explore what this means in
the following example.

Example 1. Prove that lim
x→−1

(4x+ 1) = −3.

Proof. In order to write δ in terms of ϵ, we start by writing out |f(x)− L| < ϵ:

|f(x)− L| < ϵ =⇒ |4x+ 1− (−3)| < ϵ

=⇒ |4x+ 4| < ϵ

=⇒ 4|x+ 1| < ϵ

=⇒ |x+ 1| < ϵ/4.

Our inequality is now in the form |x− c| < δ. We can now choose δ = ϵ/4 and substitute it back into
|x− c| < δ:

|x− c| < δ =⇒ |x− (−1)| < ϵ/4

=⇒ |x+ 1| < ϵ/4

=⇒ 4|x+ 1| < ϵ

=⇒ |4x+ 4| < ϵ

=⇒ |4x+ 1− (−3)| < ϵ

=⇒ |f(x)− L| < ϵ.

We can choose a δ such that 0 < |x− c| < δ =⇒ |f(x)− L| < ϵ. Therefore, lim
x→−1

(4x+ 1) = −3.
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δ is Not Unique

Example. Prove that lim
x→3

x2 = 9.

Proof. We are looking for a value of δ such that

|x− 3| < δ =⇒ |x2 − 9| < ϵ.

We can factor |x2 − 9| as the difference of two squares to rewrite the statement as

|x− 3| < δ =⇒ |x+ 3||x− 3| < ϵ

=⇒ δ|x+ 3| < ϵ.

By bounding the factor |x + 3| to a constant, we can express δ solely in terms of ϵ. We make the
restriction1 δ ≤ 1. It follows that

|x− 3| < 1 =⇒ −1 < x+ 3 < 1

=⇒ 5 < x+ 3 < 7

=⇒ |x+ 3| < 7.

Therefore,
|x− 3||x+ 3| < 7δ < ϵ

and it follows that we can choose δ = ϵ/7.
However, since we made the restriction δ ≤ 1, we must account for when ϵ > 7, as that would make

δ > 1. Thus, we choose δ to be the minimum of 1 and ϵ/7, or δ = min(1, ϵ/7). To verify the limit, we
assume that 0 < |x− 3| < δ:

|x− 3| < δ =⇒ |x− 3||x+ 3| < δ|x+ 3|
=⇒ |x− 3||x+ 3| < 7δ

=⇒ |x2 − 9| < 7 · ϵ
7

=⇒ |x2 − 9| < ϵ.

We can choose a δ such that 0 < |x− c| < δ =⇒ |f(x)− L| < ϵ. Therefore, lim
x→3

x2 = 9.

3 Infinite Limits

Definition. We say the limit lim
x→c

f(x) = ∞2 if, for any M > 0, there exists a δ > 0 such that if

0 < |x− c| < δ, then f(x) > M .

Intuitively, we are saying that, for a limit to approach infinity, f(x) must be large than an arbitrarily
large value M when x and c are an arbitrarily small distance δ apart.

Similar to verifying a finite limit, we verify an infinite limit by choosing a δ such that f(x) > M .
Just like how we wrote δ in terms of ϵ above, in the following examples we will write δ in terms of M .

Example 2. Prove that lim
x→0

1

x2
= ∞.

1We can pick any constant as an upper bound for δ, but we use 1 for convenience.
2Strictly speaking, we cannot say lim

x→c
f(x) = ∞, since infinity cannot be equal to anything. A more mathematically

sound way of expressing the value of the limit would be to say that f(x) increases without bounds, or that it approaches
infinity.
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Proof. In order to write δ in terms of M , we start by writing out f(x) > M :

f(x) > M =⇒ 1

x2
> M

=⇒ 1

M
> x2

=⇒
√

1

M
> x

=⇒ x <
1√
M

.

Our inequality is now in the form |x− c| < δ, so we choose δ = 1√
M
.

To verify the limit, we assume that 0 < |x− c| < δ, and substitute our choice of δ = 1√
M

into the

inequality:

0 < |x− c| < δ =⇒ |x| < δ

=⇒ x2 < δ2

=⇒ 1

x2
>

1

δ2

=⇒ 1

x2
>

1

( 1√
M
)2

=⇒ 1

x2
>

1
1
M

=⇒ 1

x2
> M

=⇒ f(x) > M.

We can choose a δ such that 0 < |x− c| < δ =⇒ f(x) > M . Therefore, lim
x→0

1

x2
= ∞.

Example 3. Prove that lim
x→1

3

(x− 1)2
= ∞.

Proof. We once again start by writing out f(x) > M in order to write δ in terms of M :

f(x) > M =⇒ 3

(x− 1)2
> M

=⇒ 3

M
> (x− 1)2

=⇒
√

3

M
> x− 1

=⇒ x− 1 <

√
3

M
.

Our inequality is now in the form |x− c| < δ, so we choose δ =
√

3
M .
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We assume that 0 < |x− c| < δ, and substitute our choice of δ =
√

3
M into the inequality:

0 < |x− c| < δ =⇒ |x− 1| < δ

=⇒ (x− 1)2 < δ2

=⇒ 1

(x− 1)2
>

1

δ2

=⇒ 1

(x− 1)2
>

1

(
√

3
M )2

=⇒ 1

(x− 1)2
>

1
3
M

=⇒ 1

(x− 1)2
>

M

3

=⇒ 3

(x− 1)2
> M

=⇒ f(x) > M.

We can choose a δ such that 0 < |x− c| < δ =⇒ f(x) > M . Therefore, lim
x→1

3

(x− 1)2
= ∞.

4 Limits at Infinity

Definition. We say that lim
x→∞

f(x) = L if, for any ϵ > 0, there exists an M > 0 such that, if x > M ,

then |f(x)− L| < ϵ.

Intuitively, we say that the limit of a function exists at infinity if the distance between f(x) and L
is less than an arbitrarily small distance ϵ when x is greater than an arbitrarily large value M .

To verify limits at infinity, we start with |f(x)− L| < ϵ and rearrange the inequality algebraically
until it fits the form x > M .

Example 4. Prove that lim
x→∞

1

x
= 0.

Proof. We start with |f(x)− L| < ϵ:

|f(x)− L| < ϵ =⇒
∣∣∣∣ 1x − 0

∣∣∣∣ < ϵ

=⇒ 1

ϵ
< x.

Now that our inequality is in the form x > M , we can choose M = 1
ϵ

3.
We assume x > M > 0 and substitute M = 1

ϵ into the inequality:

x > M =⇒ x >
1

ϵ

=⇒ 1

x
< ϵ

=⇒
∣∣∣∣ 1x − 0

∣∣∣∣ < ϵ

=⇒ |f(x)− L| < ϵ.

We can choose an M such that x > M =⇒ |f(x)− L| < ϵ. Therefore, lim
x→∞

1

x
= 0.

Example 5. Prove that lim
x→∞

6x+ 2

2x+ 8
= 3.

3Since ϵ is an infinitesimal, 1
ϵ
is a value greater than any real number, which makes sense since we intuitively interpret

M as an arbitrarily large value.
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Proof. We start with |f(x)− L| < ϵ:

|f(x)− L| < ϵ =⇒
∣∣∣∣6x+ 2

2x+ 8
− 3

∣∣∣∣ < ϵ

=⇒
∣∣∣∣6x+ 2

2x+ 8
− 3(2x+ 8)

2x+ 8

∣∣∣∣ < ϵ

=⇒
∣∣∣∣6x+ 2− 6x− 24

2x+ 8

∣∣∣∣ < ϵ

=⇒
∣∣∣∣ −22

2x+ 8

∣∣∣∣ < ϵ.

Since we want x > M > 0, we can assume x > 0 to drop the absolute value.

22

2x+ 8
< ϵ =⇒ 22 < ϵ(2x+ 8)

=⇒ 22 < 2ϵx+ 8ϵ

=⇒ 22− 8ϵ < 2ϵx

=⇒ 22− 8ϵ

2ϵ
< x.

We can choose M = 22−8ϵ
2ϵ . We now assume4 x > M = 22−8ϵ

2ϵ to prove that |f(x)− L| < ϵ.

x > M =⇒ x >
22− 8ϵ

2ϵ
=⇒ 2ϵx > 22− 8ϵ

=⇒ 2ϵx+ 8ϵ > 22

=⇒ ϵ(2x+ 8) > 22

=⇒ ϵ >
22

2x+ 8

=⇒
∣∣∣∣ −22

2x+ 8

∣∣∣∣ < ϵ

=⇒
∣∣∣∣6x+ 2

2x+ 8
− 3

∣∣∣∣ < ϵ

=⇒ |f(x)− L| < ϵ.

We can choose an M such that x > M =⇒ |f(x)− L| < ϵ. Therefore, lim
x→∞

6x+ 2

2x+ 8
= 3.

5 Infinite Limits at Infinity

Definition. We say the limit lim
x→∞

f(x) = ∞ if, for any M > 0, there exists an N > 0 such that if

x > N , then f(x) > M .

We can combine the definitions for infinite limits and limits at infinity into a definition for a limit
that increases without bound as the independent variable increases without bound. Intuitively, if f(x)
is greater than an arbitrarily large value M when x is greater than an arbitrarily large value N , f(x)
has an infinite limit at infinity.

To verify these types of limits, we start with f(x) > M and rearrange the inequality into the form
x > N .

Example 6. Prove that lim
x→∞

(4x+ 1) = ∞.

4We once again observe that 22−8ϵ
2ϵ

approaches infinity since ϵ is an infinitesimal.
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Proof. We start with f(x) > M :

f(x) > M =⇒ 4x+ 1 > M

=⇒ 4x > M − 1

=⇒ x >
M − 1

4
.

Therefore, we choose N = M−1
4 . We assume x > N and substitute N = M−1

4 into the inequality:

x > N =⇒ x >
M − 1

4
=⇒ 4x > M − 1

=⇒ 4x+ 1 > M

=⇒ f(x) > M.

We can choose an N such that x > N =⇒ f(x) > M . Therefore, lim
x→∞

(4x+ 1) = ∞.

Example 7. Prove that lim
x→∞

11x+ 3

7
= ∞.

Proof. We start with f(x) > M :

f(x) > M =⇒ 11x+ 3

7
> M

=⇒ 11x+ 3 > 7M

=⇒ 11x > 7M − 3

=⇒ x >
7M − 3

11
.

Therefore, we choose N = 7M−3
11 . We assume x > N and substitute N = 7M−3

11 into the inequality:

x > N =⇒ x >
7M − 3

11
=⇒ 11x > 7M − 3

=⇒ 11x+ 3 > 7M

=⇒ 11x+ 3

7
> M

=⇒ f(x) > M.

We can choose an N such that x > N =⇒ f(x) > M . Therefore, lim
x→∞

11x+ 3

7
= ∞.
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