
 Journal of Computer Science 2024

 Catalysing Research Institute https://www.catalysingresearch.org/

 Investigation Of Dataset Optimization Techniques

 for Neural Network Classification Algorithms

 Hadi Farah

 E-mail: hadifarah2008@gmail.com

 Abstract

 Computer science encompasses a wide array of functions. A more dataset-focused subfield of computer science, Artificial
 Intelligence (AI), uses algorithms that require training datasets to improve their accuracy without needing human
 intervention. These algorithms are a part of an idea known as Machine Learning (ML). Neural networks are one such
 machine learning technique for predicting and modeling dataset behavior. If the datasets are large or complex relationships
 exist between dataset variables, such techniques can lead to unacceptably long training times. One approach to dealing with
 this issue is to apply the strategic removal and optimization of certain dataset parts. There are already attempts to approach
 this problem, such as principal component analysis (PCA) and linear discriminant analysis (LDA). This work, however, will
 propose an alternate approach to data optimization: removing unneeded points based on their z-scores. Using this technique,
 we demonstrated a ninefold increase in execution speed.

 Keywords: Robotics and Intelligent Machines; Machine Learning; Artificial Neural Networks; Z-scores; Principal
 Component Analysis

 1. Introduction

 Artificial neural networks (ANNs) have become widely
 used in many sectors and companies. Companies like
 Metamind and Clarifai use AI for purposes ranging from text
 interpretation to image recognition [1]. Most applications use
 feed-forward ANNs with backpropagation (BP) to help the
 algorithm learn more efficiently and improve its
 performance. Neural networks have multiple versions. Rigid
 ANN architectures are the foundation for these methods,
 consisting of node and property transfer functions that only
 train weights. Although ANNs are useful, creating an ideal
 design for their application is unlikely. This is a serious issue,
 as there is substantial evidence suggesting that an ANN's
 knowledge-processing capacities are determined by how it's
 designed [2].

 We set out to create a new dataset reduction method that
 works by only considering data points with the most extreme
 z-scores aka. the farthest points from the mean. In concept,
 we theorized that data points closer to the mean have less
 overall effect on an algorithm's results. Thus, if we can
 preserve the dataset's attributes while removing the bulk of
 the data points, the algorithm speeds up with little to no
 compromise on accuracy. However, most data reduction
 methods try removing outliers from data sets rather than
 including them. Take Aman Preet Gulati’s 2022 paper on the

 subject. In the paper, the researchers attempted to create an
 algorithm that effectively removed outliers from a dataset, as
 they theorized that outliers were more of a nuisance than an
 asset. They acknowledged that their method of outlier
 omission had limitations as it couldn't perform very well on
 datasets that weren’t normally distributed [3]. Using our
 approach, on the other hand, could eliminate this problem
 since we are removing points based on their z-scores, which
 are not dependent on data distribution.

 2. Background

 2.1 Long Machine Learning Training Times

 An example of this can be seen once ANNs start processing
 larger and larger datasets. It becomes evident that these
 networks take a long time to train. Thus, this paper will
 elaborate on some ways to speed up training times and
 explore a new technique of data optimization: compiling
 selective traits into a smaller, more compact dataset. In
 theory, this greatly speeds up training times at the expense of
 a small delay in data preprocessing. In parallel, numerous
 recent studies on different optimization methods can improve
 training times, but there is still room for improvement.

 1 © 2024 Catalysing Research Institute

mailto:hadifarah2008@gmail.com

 Journal of Computer Science, Catalysing Research Institute Hadi Farah et al

 2.2 Principal Component Analysis & Linear Discriminant

 Analysis

 There are many ways to reduce dataset size. One way to do
 that while minimizing information loss is principal
 component analysis (PCA). PCA works by gradually
 maximizing variance by creating new, uncorrelated variables.
 It simplifies the data into smaller datasets with the same
 general patterns, allowing it to maintain accuracy while
 speeding up the training process. Also, PCA does not require
 any assumptions on the distribution of data, making it
 versatile for use in many datasets [4]. On the other hand, it is
 relatively bad at yielding results when used on datasets with
 a large number of outliers, since outliers increase variance
 and interfere with the program’s ability to identify trends,
 decreasing its accuracy [5].

 Another common method is LDA (aka. Linear Discriminant
 Analysis). LDA was first developed as a method for figuring
 out which combinations of variables could best divide
 datasets. These linear combinations allowed researchers to
 identify variables that would most influence group
 classification. LDA also offers a data point's most likely
 classification when its group is unclear. LDA operates under
 the assumption that the provided data is normally distributed.
 Due to this, LDA becomes unreliable when faced with
 datasets possessing many features. In addition, it assumes
 that data is linearly separable (classes of different points can
 be separated by a straight line), which is a disadvantage
 when working with datasets having scattered data [6].

 This method solves both problems mentioned above: PCA’s
 issue of being unable to deal with outliers effectively (since
 this model utilizes rather than antagonizes outliers) and
 LDA’s relative weakness when dealing with datasets using a
 large number of features (due to the algorithm being scalable
 across many features). We hypothesize that using
 optimization techniques may speed up training times by up to
 60% at the expense of a small increase in preprocessing
 times. The reason for this, which will be clarified shortly, is
 that our method reduced dataset size by more than half.

 2.4 Z-score Computation

 A z-score, expressed in standard deviation units, indicates
 where a raw score falls relative to the mean. If the value is
 above the mean, the z-score is positive; if it is below the
 mean, it is negative [7]. The equation to calculate a z-score is
 as follows:

 𝑍 = 𝑥 − µ
σ

 In this equation, x is the data point in question, μ is the mean
 of the data, and σ is the standard deviation. As mentioned
 above, the z-score measures how many standard deviations
 away a point is from the mean. This will be used to identify
 outliers. The diagram below shows an example that will
 demonstrate how z-scores will help us remove unused data.

 The mean y value in Figure 1 can be calculated as 198/15, or
 13.2. When applying the equation above, n will be found as
 6. Thus, the six highest and six lowest z-scores can be taken,
 with the mean being relatively the same, in this case, 13.5.
 This may also apply to features on a dataset, with even more
 accuracy due to the larger number of data points in most
 training sets. They could be reduced this way without
 changing the overall mean of the features. This means that
 similar results can be achieved with as little as ten percent of
 the original dataset, provided that the dispersion of the data
 and mean are relatively unchanged. It is also important to
 note that the function will become more accurate the more
 data points there are, since small datasets such as the above
 may have radial distributions. As the scale of the data
 increases, the percentage of points needed for an accurate
 prediction decreases, which is where this method starts to
 save time, performing relatively better on larger datasets.

 2.3 Optimization Functions

 Moving onto optimization functions, there are many that
 could be used for purposes like this. The first is RMSProp.
 RMSProp is an optimization function invented (unofficially)
 in 2012 by Geoffrey Hinton. RMSProp determines an
 adaptive learning rate based on the gradients of each
 parameter. RMSProp converges more quickly than
 conventional gradient descent techniques and can
 accommodate a variety of gradient scales by varying the
 learning rate for each parameter. This optimization function
 was the predecessor to Adam [8].

 2 © 2024 Catalysing Research Institute

 Journal of Computer Science, Catalysing Research Institute Hadi Farah et al

 Adam is a gradient-based stochastic function optimization
 function. Thanks to its ability to handle large datasets and
 parameter sets, it’s simple to use for any model. It requires
 fewer memory resources in terms of hardware and is very
 computationally efficient. Additionally, it is effective at
 addressing non-stationary targets, spare slopes, and noise.
 The Adam optimization method often involves minor
 adjustments; however, any effective model must be adjusted.
 The Adaptive Moment Estimation (Adam) technique
 maintains adaptive learning rates regardless of the
 parameters, and a single learning rate is maintained for all
 weight updates that stay constant during the training phase.
 Adam was created as a sort of improvement upon RMSProp
 [9].

 3. Methods

 3.1 The Dataset

 Our research mainly focused on a medium-sized gender
 classification dataset with 5001 facial data entries and 8
 features. The dataset was found on Kaggle [10]. The study's
 main focus was on the forehead width and height, which
 were the features chosen to test the algorithm since they were
 the only features that were continuous data. Before testing,
 the gender column of the dataset was converted from string
 values (Male and Female) to numerical values (0 and 1) to
 allow the NN to process it, and the dataset was split into a
 training and testing set at a ratio of 8:2.

 3.2 Data preprocessing

 3.2.1 PCA

 Upon testing the optimal efficiency of the PCA algorithm,
 we settled on using two principal components for data
 reduction (n_components = 2). To reach this conclusion, we
 varied n_components from 1-10, and two components were
 found to be the most accurate for its time. The PCA module
 was imported from the sklearn.decomposition library in
 Python. All data reduction methods were carried out with
 optimal parameters. PCA, for instance, used three layers to
 get its best result: an input layer of 128 neurons, another
 layer with 64 neurons, and a final layer with 3 neurons. All
 layers used sigmoid activation with Adam as the
 optimization function. In the end, the algorithm achieved a
 96.6% accuracy in approximately 5 seconds, after 10 epochs.

 3.2.2 LDA

 In addition to PCA, we also compared our results with LDA.
 When testing the optimal LDA setup, we found that it
 yielded the best results with 1 component (n_components =
 1). Just like PCA, we experimented with various values of
 n_components, and 1 was found to be the most efficient. The

 modules for this test were found in the Python library
 sklearn.discriminant_analysis. The algorithm used three
 layers; the first had 64 neurons, the second had 12, and the
 last was the output layer of 1 neuron. In addition, sigmoid
 was also found to be the best activation function in this case,
 along with adam as the optimization. In terms of loss
 minimization, all three algorithms worked best with binary
 cross-entropy. In the end, the final model hit a peak accuracy
 of 96.2% in 5.3 seconds.

 3.2.3 Z-scores

 Now comes the proposed method. To preprocess the data, we
 first calculated the z-scores of data points. The next step was
 to keep n values from both extremities of z-scores (omitting
 and discarding values that are closer to the mean), with n
 being the result of the equation:

 𝑛 = # 𝑜𝑓 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛 𝑡𝑠 0 . 92

 2

 𝑦 = 𝐶𝑒𝑖𝑙 (𝑥 0 . 92)
 2

 The value of the exponent was found through trial and error,
 and 0.92 was found to yield reliable accurate results. We had
 planned on the exponent of the function being less than one,
 to increase the percentage of data points taken the larger the
 dataset was. We set a benchmark where datasets with
 100,000 entries were to be shrunk to around a fifth of their
 size, while datasets with one million points were reduced to
 almost 15%. The result of this calculation would be divided
 by two to take a total amount of n/2 data points, assuming a
 normal distribution.

 3.3 Structure of the NN model

 As for the structure of our model, we used a Tensorflow
 neural network with 5 layers. The output, first, second, third,
 and fourth layers had 1, 8, 16, and 32 neurons respectively.
 They were used alongside simple hyperparameter
 optimization to test for optimal parameters, but this was
 removed in the final algorithm. In doing so, we found the
 initial training times and preprocessing times, in addition to
 receiving and improving upon prediction accuracy (the last
 layer was varied, and its results depended on the function).

 3 © 2024 Catalysing Research Institute

 Journal of Computer Science, Catalysing Research Institute Hadi Farah et al

 3.4 Training of the model

 The training process was carried out using hyperparameter
 optimization. This function went over several different
 combinations of neurons, activation functions, and
 optimizers. Let’s cover everything, beginning with the
 activation functions. Activation functions allow neural
 networks to convert complex, non-linearly separable input
 data into potentially linearly separable representations [11].
 The first function tested was the sigmoid function. It’s been
 one of the most commonly used activation functions in the
 past, along with tanh, or hyperbolic tangent. However,
 sigmoid is relatively unreliable in some situations as it
 saturates gradients, making it less reliable in certain
 situations [12].

 ReLU (rectified linear unit) was created to solve this
 problem. ReLU's biggest advantage was that it solved the
 sigmoid function’s vanishing gradient issue [13]. This issue
 occurs because of the way sigmoid functions work; which is
 squeezing inputs from a full range of numbers to a value
 between zero and one. As the function is centered around
 deriving inputs to return the gradient, these derivatives can
 get quite small, meaning the gradient would slowly diminish.
 Despite these problems, the sigmoid function was
 experimentally proved to be the best fit for our dataset. Keep
 in mind that dataset specifications could make the vanishing
 gradient problem impertinent.

 3.5 Parameter Comparisons

 After repeated testing of all the algorithms that were to be
 used, utilizing the hyperparameter optimization function
 spoken about earlier, the parameters that yielded the best
 results were the following:

 No data reduction: sigmoid activation, 256 neurons, adam
 optimization

 Z-score method: sigmoid activation, 256 neurons, adam
 optimization

 PCA: sigmoid activation, 128 neurons, adam optimization

 LDA: sigmoid activation, 64 neurons, adam optimization

 Binary cross-entropy was used as the loss function for all
 cases, as it was found to perform better than MSE (Mean
 Squared Error) and MAE (Mean Absolute Error)

 3.5 Post-result Findings

 To prove the algorithm’s validity, we confirmed that the
 data’s mean and variance remained unchanged upon
 reduction, to ensure that the results were due to the

 algorithm’s competency and not lucky classification of data.
 Here is a comparison of the data before and after reduction:

 Before reduction

 After reduction

 Both figures come from a scatterplot of the data made using
 the Python matplotlib library.

 As demonstrated by the figures, the more central data points
 were successfully removed, with a marginal change in
 forehead width mean. Upon further research, however, we
 noticed that the initial method of selecting an equal number
 of extremities was unfinished since it relied on a normal data
 distribution, just like LDA. Thus, we tweaked the code to
 identify the data distribution and take several points
 proportional to the original.

 In essence, the algorithm accommodated skewed
 distributions by varying the number of outliers taken from
 each side of z-scores. For example, if data points were
 positively skewed, and three-quarters were less than the
 mean, 75% of n points were taken from the lower extreme
 z-scores and 25% from the upper extremities.

 After running tests with the improved algorithm and
 rerunning the tests, the mean forehead width had been

 4 © 2024 Catalysing Research Institute

 Journal of Computer Science, Catalysing Research Institute Hadi Farah et al

 adjusted slightly and was now more accurate than before
 (from 13.08 to 13.14). After reduction, the new training
 dataset was fed into the NN, with even more positive results;
 the revised algorithm acquired a 97.9% accuracy in 3
 seconds (using the same parameters as the previous
 algorithms). In this way, the algorithm could now process
 negatively and positively skewed datasets.

 4. Results and Discussion

 The above figure displays a measure of the accuracy vs. the
 time taken to run the algorithm.

 In the end, all results were measured after the appropriate
 hyperparameter optimization. In terms of hardware
 specifications, all algorithms were run on Google Colab with
 12.7 GB of RAM, 107.7 available GB of disk space, and an
 Intel(R) Xeon(R) CPU @ 2.20GHz processor. Before any
 reduction, the model reached a peak accuracy of 96.4% in 23
 seconds. The results were pleasantly surprising after the
 z-score filtering. In only 3 seconds of training, the model
 achieved a peak accuracy of 97.9%, exceeding initial
 expectations. Rather than the expected timesaving of around
 60%, there was almost an 87% reduction in training time.
 Comparing the Z-score method to PCA and LDA, PCA
 yielded a 96.6% accuracy in 4.7 seconds, while LDA ended
 with 96.2% accuracy in 5.3 seconds.

 During testing, we faced many hurdles in preventing
 overfitting and underfitting. Eventually, we found a balance
 by using a simple, 3-hidden layer ANN with sigmoid
 activation for the z-score method. Tests were repeated using
 larger datasets with similar structures and results could be
 seen in both cases. After testing, we noticed a potential
 downfall of our function, since it was failing to classify
 datasets with skewed distributions. To fix that problem, we
 set out (in the Post-results Findings section) to resolve this
 issue and ultimately came up with a function to calculate the
 number of points above and below the mean. With the new
 changes, the algorithm now took a specific percentage of

 outliers from each extremity in proportion to the function’s
 result. For example, if the function returned 45% of points
 above the mean, the algorithm would take 45% of its outliers
 from the upper extremities and 55% from the lower
 extremities.

 The most promising aspect of the algorithm is that it proved
 capable of being both faster and more accurate than current
 solutions in the field, rather than the tradeoff between speed
 and accuracy that is expected by similar algorithms. With
 more extensive research, the method proposed in this paper
 could potentially become even faster and more accurate and
 could be changed to accommodate diverse types and
 distributions of datasets, or expanded to handle more than
 two features at a time.

 5. Conclusion

 To conclude, we set out to find whether or not we could
 develop a dataset reduction that could rival conventional
 ones by using z scores. We were ultimately successful in
 producing a simple model that could accurately and quickly
 filter datasets, accurately filtering our dataset(s) in less than 5
 seconds. After comparing our model with the LDA and PCA
 models, we can conclude that our data reduction method is
 more accurate and slightly faster than the two above, with
 our algorithm being 1.7 seconds faster than PCA, the fastest
 method, and 1.3% more accurate than PCA, the most
 accurate method. We experimented with hyperparameter
 optimization, and the results remained consistent.

 This algorithm holds promise as it (so far) proves to be a
 faster, more accurate way to process data. With all said and
 done, this means that companies and firms that require large
 amounts of data processed quickly (Amazon’s product filters,
 for example) can use this method to process datasets where
 other algorithms fall short. All in all, future research can still
 be done, such as testing and improving the function’s ability
 to accurately classify data from smaller datasets, and
 comparing it to even more data reduction algorithms
 commonly used to see where it stands.

 Acknowledgements

 Hadi Farah is a 16-year-old Lebanese-American student
 studying at the International School of Choueifat, Doha,
 aspiring to become a Computer Science Engineering Student
 in the US. He is especially passionate about AI and Robotics
 and aspires to improve the consumer technology field
 through his work.

 Special thanks to Dr. Eric Sakk (Morgan State University)
 and Timothy Adamson (Yale University) for their support of
 this paper.

 5 © 2024 Catalysing Research Institute

 Journal of Computer Science, Catalysing Research Institute Hadi Farah et al

 References

 [1] Çoban, Enis Berk. “Neural Networks and Their Applications.”
 ResearchGate, Feb. 2016,
 https://doi.org/10.13140/RG.2.1.5176.0404 .

 [2] Qamar, Roheen, and Baqar Ali Zardari. “Artificial Neural
 Networks: An Overview.” ResearchGate, Aug. 2023, pp.
 130–39. https://doi.org/10.58496/mjcsc/2023/015 .

 [3] Gulati, Aman Preet. “Dealing With Outliers Using the
 Z-Score Method.” Analytics Vidhya, 2 Sept. 2022,
 www.analyticsvidhya.com/blog/2022/08/dealing-with
 -outliers-using-the-z-score-method .

 [4] Jolliffe, Ian T., and Jorge Cadima. “Principal Component
 Analysis: A Review and Recent Developments.” Philosophical
 Transactions - Royal Society. Mathematical, Physical and
 Engineering Sciences/Philosophical Transactions - Royal
 Society. Mathematical, Physical and Engineering Sciences, vol.
 374, no. 2065, Apr. 2016, p. 20150202.
 https://doi.org/10.1098/rsta.2015.0202 .

 [5] Chen, Xiaoying, et al. “Robust Principal Component Analysis
 for Accurate Outlier Sample Detection in RNA-Seq Data.”
 BMC Bioinformatics, vol. 21, no. 1, June 2020,
 https://doi.org/10.1186/s12859-020-03608-0 .

 [6] Desai, Chitra G. “Understanding Linear Discriminant Analysis
 for Classification and Dimensionality Reduction.”
 ResearchGate, Oct. 2022,
 www.researchgate.net/publication/364322214_Understanding_
 Linear_Discriminant_Analysis_for_Classification_and_Dimensi
 onality_Reduction .

 [7] Mcleod, Saul, PhD. “Z-Score: Definition, Formula, Calculation
 &Amp; Interpretation.” Simply Psychology, Oct. 2023,
 www.simplypsychology.org/z-score.html .

 [8] Elshamy, Reham, et al. “Improving the Efficiency of RMSProp
 Optimizer by Utilizing Nestrove in Deep Learning.” Scientific
 Reports, vol. 13, no. 1, May 2023,
 https://doi.org/10.1038/s41598-023-35663-x .

 [9] Alom, Mohammed. “Adam Optimization Algorithm.”
 ResearchGate, June 2021,
 www.researchgate.net/publication/352497171_Adam_Optimizat
 ion_Algorithm .

 [10] Jifry Issadeen
 https://www.kaggle.com/datasets/elakiricoder/gender-clas
 sification-dataset

 [11] Dubey, Shiv Ram, et al. “Activation Functions in Deep
 Learning: A Comprehensive Survey and Benchmark.”
 arXiv.org, 29 Sept. 2021, arxiv.org/abs/2109.14545 .

 [12] Boedeker, Peter, and Nathan T. Kearns. “Linear
 Discriminant Analysis for Prediction of Group
 Membership: A User-Friendly Primer.” Advances in

 Methods and Practices in Psychological Science, vol. 2,
 no. 3, July 2019, pp. 250–63.
 https://doi.org/10.1177/2515245919849378 .

 [13] “Z. Hu, J. Zhang, and Y. Ge, "Handling Vanishing
 Gradient Problem Using Artificial Derivative," in IEEE
 Access, vol. 9, pp. 22371-22377, 2021, doi:
 10.1109/ACCESS.2021.3054915.

 6 © 2024 Catalysing Research Institute

https://doi.org/10.13140/RG.2.1.5176.0404
https://doi.org/10.58496/mjcsc/2023/015
http://www.analyticsvidhya.com/blog/2022/08/dealing-with-outliers-using-the-z-score-method
http://www.analyticsvidhya.com/blog/2022/08/dealing-with-outliers-using-the-z-score-method
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1186/s12859-020-03608-0
http://www.researchgate.net/publication/364322214_Understanding_Linear_Discriminant_Analysis_for_Classification_and_Dimensionality_Reduction
http://www.researchgate.net/publication/364322214_Understanding_Linear_Discriminant_Analysis_for_Classification_and_Dimensionality_Reduction
http://www.researchgate.net/publication/364322214_Understanding_Linear_Discriminant_Analysis_for_Classification_and_Dimensionality_Reduction
http://www.simplypsychology.org/z-score.html
https://doi.org/10.1038/s41598-023-35663-x
http://www.researchgate.net/publication/352497171_Adam_Optimization_Algorithm
http://www.researchgate.net/publication/352497171_Adam_Optimization_Algorithm
https://www.kaggle.com/datasets/elakiricoder/gender-classification-dataset
https://www.kaggle.com/datasets/elakiricoder/gender-classification-dataset
http://arxiv.org/abs/2109.14545
https://doi.org/10.1177/2515245919849378

