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 Abstract 

 Computer  science  encompasses  a  wide  array  of  functions.  A  more  dataset-focused  subfield  of  computer  science,  Artificial 
 Intelligence  (AI),  uses  algorithms  that  require  training  datasets  to  improve  their  accuracy  without  needing  human 
 intervention.  These  algorithms  are  a  part  of  an  idea  known  as  Machine  Learning  (ML).  Neural  networks  are  one  such 
 machine  learning  technique  for  predicting  and  modeling  dataset  behavior.  If  the  datasets  are  large  or  complex  relationships 
 exist  between  dataset  variables,  such  techniques  can  lead  to  unacceptably  long  training  times.  One  approach  to  dealing  with 
 this  issue  is  to  apply  the  strategic  removal  and  optimization  of  certain  dataset  parts.  There  are  already  attempts  to  approach 
 this  problem,  such  as  principal  component  analysis  (PCA)  and  linear  discriminant  analysis  (LDA).  This  work,  however,  will 
 propose  an  alternate  approach  to  data  optimization:  removing  unneeded  points  based  on  their  z-scores.  Using  this  technique, 
 we demonstrated a ninefold increase in execution speed. 

 Keywords: Robotics and Intelligent Machines; Machine Learning; Artificial Neural Networks; Z-scores; Principal 
 Component Analysis 

 1. Introduction 

 Artificial  neural  networks  (ANNs)  have  become  widely 
 used  in  many  sectors  and  companies.  Companies  like 
 Metamind  and  Clarifai  use  AI  for  purposes  ranging  from  text 
 interpretation  to  image  recognition  [1].  Most  applications  use 
 feed-forward  ANNs  with  backpropagation  (BP)  to  help  the 
 algorithm  learn  more  efficiently  and  improve  its 
 performance.  Neural  networks  have  multiple  versions.  Rigid 
 ANN  architectures  are  the  foundation  for  these  methods, 
 consisting  of  node  and  property  transfer  functions  that  only 
 train  weights.  Although  ANNs  are  useful,  creating  an  ideal 
 design  for  their  application  is  unlikely.  This  is  a  serious  issue, 
 as  there  is  substantial  evidence  suggesting  that  an  ANN's 
 knowledge-processing  capacities  are  determined  by  how  it's 
 designed [2]. 

 We  set  out  to  create  a  new  dataset  reduction  method  that 
 works  by  only  considering  data  points  with  the  most  extreme 
 z-scores  aka.  the  farthest  points  from  the  mean.  In  concept, 
 we  theorized  that  data  points  closer  to  the  mean  have  less 
 overall  effect  on  an  algorithm's  results.  Thus,  if  we  can 
 preserve  the  dataset's  attributes  while  removing  the  bulk  of 
 the  data  points,  the  algorithm  speeds  up  with  little  to  no 
 compromise  on  accuracy.  However,  most  data  reduction 
 methods  try  removing  outliers  from  data  sets  rather  than 
 including  them.  Take  Aman  Preet  Gulati’s  2022  paper  on  the 

 subject.  In  the  paper,  the  researchers  attempted  to  create  an 
 algorithm  that  effectively  removed  outliers  from  a  dataset,  as 
 they  theorized  that  outliers  were  more  of  a  nuisance  than  an 
 asset.  They  acknowledged  that  their  method  of  outlier 
 omission  had  limitations  as  it  couldn't  perform  very  well  on 
 datasets  that  weren’t  normally  distributed  [3].  Using  our 
 approach,  on  the  other  hand,  could  eliminate  this  problem 
 since  we  are  removing  points  based  on  their  z-scores,  which 
 are not dependent on data distribution. 

 2. Background 

 2.1 Long Machine Learning Training Times 

 An example of this can be seen once ANNs start processing 
 larger and larger datasets. It becomes evident that these 
 networks take a long time to train. Thus, this paper will 
 elaborate on some ways to speed up training times and 
 explore a new technique of data optimization: compiling 
 selective traits into a smaller, more compact dataset. In 
 theory, this greatly speeds up training times at the expense of 
 a small delay in data preprocessing. In parallel, numerous 
 recent studies on different optimization methods can improve 
 training times, but there is still room for improvement. 
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 2.2 Principal Component Analysis & Linear Discriminant 

 Analysis 

 There are many ways to reduce dataset size. One way to do 
 that while minimizing information loss is principal 
 component analysis (PCA). PCA works by gradually 
 maximizing variance by creating new, uncorrelated variables. 
 It simplifies the data into smaller datasets with the same 
 general patterns, allowing it to maintain accuracy while 
 speeding up the training process. Also, PCA does not require 
 any assumptions on the distribution of data, making it 
 versatile for use in many datasets [4]. On the other hand, it is 
 relatively bad at yielding results when used on datasets with 
 a large number of outliers, since outliers increase variance 
 and interfere with the program’s ability to identify trends, 
 decreasing its accuracy [5]. 

 Another common method is LDA (aka. Linear Discriminant 
 Analysis). LDA was first developed as a method for figuring 
 out which combinations of variables could best divide 
 datasets. These linear combinations allowed researchers to 
 identify variables that would most influence group 
 classification. LDA also offers a data point's most likely 
 classification when its group is unclear. LDA operates under 
 the assumption that the provided data is normally distributed. 
 Due to this, LDA becomes unreliable when faced with 
 datasets possessing many features. In addition, it assumes 
 that data is linearly separable (classes of different points can 
 be separated by a straight line), which is a disadvantage 
 when working with datasets having scattered data [6]. 

 This method solves both problems mentioned above: PCA’s 
 issue of being unable to deal with outliers effectively (since 
 this model utilizes rather than antagonizes outliers) and 
 LDA’s relative weakness when dealing with datasets using a 
 large number of features (due to the algorithm being scalable 
 across many features). We hypothesize that using 
 optimization techniques may speed up training times by up to 
 60% at the expense of a small increase in preprocessing 
 times. The reason for this, which will be clarified shortly, is 
 that our method reduced dataset size by more than half. 

 2.4 Z-score Computation 

 A z-score, expressed in standard deviation units, indicates 
 where a raw score falls relative to the mean. If the value is 
 above the mean, the z-score is positive; if it is below the 
 mean, it is negative [7]. The equation to calculate a z-score is 
 as follows: 

 𝑍    =  𝑥 − µ 
σ

 In this equation, x is the data point in question, μ is the mean 
 of the data, and σ is the standard deviation. As mentioned 
 above, the z-score measures how many standard deviations 
 away a point is from the mean. This will be used to identify 
 outliers. The diagram below shows an example that will 
 demonstrate how z-scores will help us remove unused data. 

 The  mean  y  value  in  Figure  1  can  be  calculated  as  198/15,  or 
 13.2.  When  applying  the  equation  above,  n  will  be  found  as 
 6.  Thus,  the  six  highest  and  six  lowest  z-scores  can  be  taken, 
 with  the  mean  being  relatively  the  same,  in  this  case,  13.5. 
 This  may  also  apply  to  features  on  a  dataset,  with  even  more 
 accuracy  due  to  the  larger  number  of  data  points  in  most 
 training  sets.  They  could  be  reduced  this  way  without 
 changing  the  overall  mean  of  the  features.  This  means  that 
 similar  results  can  be  achieved  with  as  little  as  ten  percent  of 
 the  original  dataset,  provided  that  the  dispersion  of  the  data 
 and  mean  are  relatively  unchanged.  It  is  also  important  to 
 note  that  the  function  will  become  more  accurate  the  more 
 data  points  there  are,  since  small  datasets  such  as  the  above 
 may  have  radial  distributions.  As  the  scale  of  the  data 
 increases,  the  percentage  of  points  needed  for  an  accurate 
 prediction  decreases,  which  is  where  this  method  starts  to 
 save time, performing relatively better on larger datasets. 

 2.3 Optimization Functions 

 Moving onto optimization functions, there are many that 
 could be used for purposes like this. The first is RMSProp. 
 RMSProp is an optimization function invented (unofficially) 
 in 2012 by Geoffrey Hinton. RMSProp determines an 
 adaptive learning rate based on the gradients of each 
 parameter. RMSProp converges more quickly than 
 conventional gradient descent techniques and can 
 accommodate a variety of gradient scales by varying the 
 learning rate for each parameter. This optimization function 
 was the predecessor to Adam [8]. 
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 Adam is a gradient-based stochastic function optimization 
 function. Thanks to its ability to handle large datasets and 
 parameter sets, it’s simple to use for any model. It requires 
 fewer memory resources in terms of hardware and is very 
 computationally efficient. Additionally, it is effective at 
 addressing non-stationary targets, spare slopes, and noise. 
 The Adam optimization method often involves minor 
 adjustments; however, any effective model must be adjusted. 
 The Adaptive Moment Estimation (Adam) technique 
 maintains adaptive learning rates regardless of the 
 parameters, and a single learning rate is maintained for all 
 weight updates that stay constant during the training phase. 
 Adam was created as a sort of improvement upon RMSProp 
 [9]. 

 3. Methods 

 3.1 The Dataset 

 Our research mainly focused on a medium-sized gender 
 classification dataset with 5001 facial data entries and 8 
 features. The dataset was found on Kaggle [10]. The study's 
 main focus was on the forehead width and height, which 
 were the features chosen to test the algorithm since they were 
 the only features that were continuous data. Before testing, 
 the gender column of the dataset was converted from string 
 values (Male and Female) to numerical values (0 and 1) to 
 allow the NN to process it, and the dataset was split into a 
 training and testing set at a ratio of 8:2. 

 3.2 Data preprocessing 

 3.2.1 PCA 

 Upon testing the optimal efficiency of the PCA algorithm, 
 we settled on using two principal components for data 
 reduction (n_components = 2). To reach this conclusion, we 
 varied n_components from 1-10, and two components were 
 found to be the most accurate for its time. The PCA module 
 was imported from the sklearn.decomposition library in 
 Python. All data reduction methods were carried out with 
 optimal parameters. PCA, for instance, used three layers to 
 get its best result: an input layer of 128 neurons, another 
 layer with 64 neurons, and a final layer with 3 neurons. All 
 layers used sigmoid activation with Adam as the 
 optimization function. In the end, the algorithm achieved a 
 96.6% accuracy in approximately 5 seconds, after 10 epochs. 

 3.2.2 LDA 

 In addition to PCA, we also compared our results with LDA. 
 When testing the optimal LDA setup, we found that it 
 yielded the best results with 1 component (n_components = 
 1). Just like PCA, we experimented with various values of 
 n_components, and 1 was found to be the most efficient. The 

 modules for this test were found in the Python library 
 sklearn.discriminant_analysis. The algorithm used three 
 layers; the first had 64 neurons, the second had 12, and the 
 last was the output layer of 1 neuron. In addition, sigmoid 
 was also found to be the best activation function in this case, 
 along with adam as the optimization. In terms of loss 
 minimization, all three algorithms worked best with binary 
 cross-entropy. In the end, the final model hit a peak accuracy 
 of 96.2% in 5.3 seconds. 

 3.2.3 Z-scores 

 Now comes the proposed method. To preprocess the data, we 
 first calculated the z-scores of data points. The next step was 
 to keep n values from both extremities of  z-scores (omitting 
 and discarding values that are closer to the mean), with n 
 being the result of the equation: 

 𝑛    =     #     𝑜𝑓     𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛  𝑡𝑠  0 . 92 

 2 

 𝑦 =  𝐶𝑒𝑖𝑙 ( 𝑥  0 . 92 )
 2 

 The value of the exponent was found through trial and error, 
 and 0.92 was found to yield reliable accurate results. We had 
 planned on the exponent of the function being less than one, 
 to increase the percentage of data points taken the larger the 
 dataset was. We set a benchmark where datasets with 
 100,000 entries were to be shrunk to around a fifth of their 
 size, while datasets with one million points were reduced to 
 almost 15%. The result of this calculation would be divided 
 by two to take a total amount of n/2 data points, assuming a 
 normal distribution. 

 3.3 Structure of the NN model 

 As for the structure of our model, we used a Tensorflow 
 neural network with 5 layers. The output, first, second, third, 
 and fourth layers had 1, 8, 16, and 32 neurons respectively. 
 They were used alongside simple hyperparameter 
 optimization to test for optimal parameters, but this was 
 removed in the final algorithm. In doing so, we found the 
 initial training times and preprocessing times, in addition to 
 receiving and improving upon prediction accuracy (the last 
 layer was varied, and its results depended on the function). 
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 3.4 Training of the model 

 The training process was carried out using hyperparameter 
 optimization. This function went over several different 
 combinations of neurons, activation functions, and 
 optimizers. Let’s cover everything, beginning with the 
 activation functions. Activation functions allow neural 
 networks to convert complex, non-linearly separable input 
 data into potentially linearly separable representations [11]. 
 The first function tested was the sigmoid function. It’s been 
 one of the most commonly used activation functions in the 
 past, along with tanh, or hyperbolic tangent. However, 
 sigmoid is relatively unreliable in some situations as it 
 saturates gradients, making it less reliable in certain 
 situations [12]. 

 ReLU (rectified linear unit) was created to solve this 
 problem. ReLU's biggest advantage was that it solved the 
 sigmoid function’s vanishing gradient issue [13]. This issue 
 occurs because of the way sigmoid functions work; which is 
 squeezing inputs from a full range of numbers to a value 
 between zero and one. As the function is centered around 
 deriving inputs to return the gradient, these derivatives can 
 get quite small, meaning the gradient would slowly diminish. 
 Despite these problems, the sigmoid function was 
 experimentally proved to be the best fit for our dataset. Keep 
 in mind that dataset specifications could make the vanishing 
 gradient problem impertinent. 

 3.5 Parameter Comparisons 

 After repeated testing of all the algorithms that were to be 
 used, utilizing the hyperparameter optimization function 
 spoken about earlier, the parameters that yielded the best 
 results were the following: 

 No data reduction: sigmoid activation, 256 neurons,  adam 
 optimization 

 Z-score method: sigmoid activation, 256 neurons,  adam 
 optimization 

 PCA: sigmoid activation, 128 neurons, adam optimization 

 LDA: sigmoid activation, 64 neurons, adam optimization 

 Binary cross-entropy was used as the loss function for all 
 cases, as it was found to perform better than MSE (Mean 
 Squared Error) and MAE (Mean Absolute Error) 

 3.5 Post-result Findings 

 To prove the algorithm’s validity, we confirmed that the 
 data’s mean and variance remained unchanged upon 
 reduction, to ensure that the results were due to the 

 algorithm’s competency and not lucky classification of data. 
 Here is a comparison of the data before and after reduction: 

 Before reduction 

 After reduction 

 Both figures come from a scatterplot of the data made using 
 the Python matplotlib library. 

 As demonstrated by the figures, the more central data points 
 were successfully removed, with a marginal change in 
 forehead width mean. Upon further research, however, we 
 noticed that the initial method of selecting an equal number 
 of extremities was unfinished since it relied on a normal data 
 distribution, just like LDA. Thus, we tweaked the code to 
 identify the data distribution and take several points 
 proportional to the original. 

 In essence, the algorithm accommodated skewed 
 distributions by varying the number of outliers taken from 
 each side of z-scores. For example, if data points were 
 positively skewed, and three-quarters were less than the 
 mean, 75% of n points were taken from the lower extreme 
 z-scores and 25% from the upper extremities. 

 After running tests with the improved algorithm and 
 rerunning the tests, the mean forehead width had been 
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 adjusted slightly and was now more accurate than before 
 (from 13.08 to 13.14). After reduction, the new training 
 dataset was fed into the NN, with even more positive results; 
 the revised algorithm acquired a 97.9% accuracy in 3 
 seconds (using the same parameters as the previous 
 algorithms). In this way, the algorithm could now process 
 negatively and positively skewed datasets. 

 4. Results and Discussion 

 The above figure displays a measure of the accuracy vs. the 
 time taken to run the algorithm. 

 In the end, all results were measured after the appropriate 
 hyperparameter optimization. In terms of hardware 
 specifications, all algorithms were run on Google Colab with 
 12.7 GB of RAM, 107.7 available GB of disk space, and an 
 Intel(R) Xeon(R) CPU @ 2.20GHz processor. Before any 
 reduction, the model reached a peak accuracy of 96.4% in 23 
 seconds. The results were pleasantly surprising after the 
 z-score filtering. In only 3 seconds of training, the model 
 achieved a peak accuracy of 97.9%, exceeding initial 
 expectations. Rather than the expected timesaving of around 
 60%, there was almost an 87% reduction in training time. 
 Comparing the Z-score method to PCA and LDA, PCA 
 yielded a 96.6% accuracy in 4.7 seconds, while LDA ended 
 with 96.2% accuracy in 5.3 seconds. 

 During testing, we faced many hurdles in preventing 
 overfitting and underfitting. Eventually, we found a balance 
 by using a simple, 3-hidden layer ANN with sigmoid 
 activation for the z-score method. Tests were repeated using 
 larger datasets with similar structures and results could be 
 seen in both cases. After testing, we noticed a potential 
 downfall of our function, since it was failing to classify 
 datasets with skewed distributions. To fix that problem, we 
 set out (in the Post-results Findings section) to resolve this 
 issue and ultimately came up with a function to calculate the 
 number of points above and below the mean. With the new 
 changes, the algorithm now took a specific percentage of 

 outliers from each extremity in proportion to the function’s 
 result. For example, if the function returned 45% of points 
 above the mean, the algorithm would take 45% of its outliers 
 from the upper extremities and 55% from the lower 
 extremities. 

 The most promising aspect of the algorithm is that it proved 
 capable of being both faster and more accurate than current 
 solutions in the field, rather than the tradeoff between speed 
 and accuracy that is expected by similar algorithms. With 
 more extensive research, the method proposed in this paper 
 could potentially become even faster and more accurate and 
 could be changed to accommodate diverse types and 
 distributions of datasets, or expanded to handle more than 
 two features at a time. 

 5. Conclusion 

 To conclude, we set out to find whether or not we could 
 develop a dataset reduction that could rival conventional 
 ones by using z scores. We were ultimately successful in 
 producing a simple model that could accurately and quickly 
 filter datasets, accurately filtering our dataset(s) in less than 5 
 seconds. After comparing our model with the LDA and PCA 
 models, we can conclude that our data reduction method is 
 more accurate and slightly faster than the two above, with 
 our algorithm being 1.7 seconds faster than PCA, the fastest 
 method, and 1.3% more accurate than PCA, the most 
 accurate method. We experimented with hyperparameter 
 optimization, and the results remained consistent. 

 This algorithm holds promise as it (so far) proves to be a 
 faster, more accurate way to process data. With all said and 
 done, this means that companies and firms that require large 
 amounts of data processed quickly (Amazon’s product filters, 
 for example) can use this method to process datasets where 
 other algorithms fall short. All in all, future research can still 
 be done, such as testing and improving the function’s ability 
 to accurately classify data from smaller datasets, and 
 comparing it to even more data reduction algorithms 
 commonly used to see where it stands. 
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