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Abstract

Computer science encompasses a wide array of functions. A more dataset-focused subfield of computer science, Artificial
Intelligence (AI), uses algorithms that require training datasets to improve their accuracy without needing human
intervention. These algorithms are a part of an idea known as Machine Learning (ML). Neural networks are one such
machine learning technique for predicting and modeling dataset behavior. If the datasets are large or complex relationships
exist between dataset variables, such techniques can lead to unacceptably long training times. One approach to dealing with
this issue is to apply the strategic removal and optimization of certain dataset parts. There are already attempts to approach
this problem, such as principal component analysis (PCA) and linear discriminant analysis (LDA). This work, however, will
propose an alternate approach to data optimization: removing unneeded points based on their z-scores. Using this technique,

we demonstrated a ninefold increase in execution speed.
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1. Introduction

Artificial neural networks (ANNs) have become widely
used in many sectors and companies. Companies like
Metamind and Clarifai use Al for purposes ranging from text
interpretation to image recognition [1]. Most applications use
feed-forward ANNs with backpropagation (BP) to help the
algorithm learn more efficiently and improve its
performance. Neural networks have multiple versions. Rigid
ANN architectures are the foundation for these methods,
consisting of node and property transfer functions that only
train weights. Although ANNs are useful, creating an ideal
design for their application is unlikely. This is a serious issue,
as there is substantial evidence suggesting that an ANN's
knowledge-processing capacities are determined by how it's
designed [2].

We set out to create a new dataset reduction method that
works by only considering data points with the most extreme
z-scores aka. the farthest points from the mean. In concept,
we theorized that data points closer to the mean have less
overall effect on an algorithm's results. Thus, if we can
preserve the dataset's attributes while removing the bulk of
the data points, the algorithm speeds up with little to no
compromise on accuracy. However, most data reduction
methods try removing outliers from data sets rather than
including them. Take Aman Preet Gulati’s 2022 paper on the

subject. In the paper, the researchers attempted to create an
algorithm that effectively removed outliers from a dataset, as
they theorized that outliers were more of a nuisance than an
asset. They acknowledged that their method of outlier
omission had limitations as it couldn't perform very well on
datasets that weren’t normally distributed [3]. Using our
approach, on the other hand, could eliminate this problem
since we are removing points based on their z-scores, which
are not dependent on data distribution.

2. Background

2.1 Long Machine Learning Training Times

An example of this can be seen once ANNSs start processing
larger and larger datasets. It becomes evident that these
networks take a long time to train. Thus, this paper will
elaborate on some ways to speed up training times and
explore a new technique of data optimization: compiling
selective traits into a smaller, more compact dataset. In
theory, this greatly speeds up training times at the expense of
a small delay in data preprocessing. In parallel, numerous
recent studies on different optimization methods can improve
training times, but there is still room for improvement.
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2.2 Principal Component Analysis & Linear Discriminant
Analysis

There are many ways to reduce dataset size. One way to do
that while minimizing information loss is principal
component analysis (PCA). PCA works by gradually
maximizing variance by creating new, uncorrelated variables.
It simplifies the data into smaller datasets with the same
general patterns, allowing it to maintain accuracy while
speeding up the training process. Also, PCA does not require
any assumptions on the distribution of data, making it
versatile for use in many datasets [4]. On the other hand, it is
relatively bad at yielding results when used on datasets with
a large number of outliers, since outliers increase variance
and interfere with the program’s ability to identify trends,
decreasing its accuracy [5].

Another common method is LDA (aka. Linear Discriminant
Analysis). LDA was first developed as a method for figuring
out which combinations of variables could best divide
datasets. These linear combinations allowed researchers to
identify variables that would most influence group
classification. LDA also offers a data point's most likely
classification when its group is unclear. LDA operates under
the assumption that the provided data is normally distributed.
Due to this, LDA becomes unreliable when faced with
datasets possessing many features. In addition, it assumes
that data is linearly separable (classes of different points can
be separated by a straight line), which is a disadvantage
when working with datasets having scattered data [6].

This method solves both problems mentioned above: PCA’s
issue of being unable to deal with outliers effectively (since
this model utilizes rather than antagonizes outliers) and
LDA’s relative weakness when dealing with datasets using a
large number of features (due to the algorithm being scalable
across many features). We hypothesize that using
optimization techniques may speed up training times by up to
60% at the expense of a small increase in preprocessing
times. The reason for this, which will be clarified shortly, is
that our method reduced dataset size by more than half.

2.4 Z-score Computation

A z-score, expressed in standard deviation units, indicates
where a raw score falls relative to the mean. If the value is
above the mean, the z-score is positive; if it is below the
mean, it is negative [7]. The equation to calculate a z-score is
as follows:

In this equation, x is the data point in question, p is the mean
of the data, and o is the standard deviation. As mentioned
above, the z-score measures how many standard deviations
away a point is from the mean. This will be used to identify
outliers. The diagram below shows an example that will
demonstrate how z-scores will help us remove unused data.

The mean y value in Figure 1 can be calculated as 198/15, or
13.2. When applying the equation above, n will be found as
6. Thus, the six highest and six lowest z-scores can be taken,
with the mean being relatively the same, in this case, 13.5.
This may also apply to features on a dataset, with even more
accuracy due to the larger number of data points in most
training sets. They could be reduced this way without
changing the overall mean of the features. This means that
similar results can be achieved with as little as ten percent of
the original dataset, provided that the dispersion of the data
and mean are relatively unchanged. It is also important to
note that the function will become more accurate the more
data points there are, since small datasets such as the above
may have radial distributions. As the scale of the data
increases, the percentage of points needed for an accurate
prediction decreases, which is where this method starts to
save time, performing relatively better on larger datasets.

2.3 Optimization Functions

Moving onto optimization functions, there are many that
could be used for purposes like this. The first is RMSProp.
RMSProp is an optimization function invented (unofficially)
in 2012 by Geoffrey Hinton. RMSProp determines an
adaptive learning rate based on the gradients of each
parameter. RMSProp converges more quickly than
conventional gradient descent techniques and can
accommodate a variety of gradient scales by varying the
learning rate for each parameter. This optimization function
was the predecessor to Adam [8].
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Adam is a gradient-based stochastic function optimization
function. Thanks to its ability to handle large datasets and
parameter sets, it’s simple to use for any model. It requires
fewer memory resources in terms of hardware and is very
computationally efficient. Additionally, it is effective at
addressing non-stationary targets, spare slopes, and noise.
The Adam optimization method often involves minor
adjustments; however, any effective model must be adjusted.
The Adaptive Moment Estimation (Adam) technique
maintains adaptive learning rates regardless of the
parameters, and a single learning rate is maintained for all
weight updates that stay constant during the training phase.
Adam was created as a sort of improvement upon RMSProp

[9].
3. Methods
3.1 The Dataset

Our research mainly focused on a medium-sized gender
classification dataset with 5001 facial data entries and 8
features. The dataset was found on Kaggle [10]. The study's
main focus was on the forehead width and height, which
were the features chosen to test the algorithm since they were
the only features that were continuous data. Before testing,
the gender column of the dataset was converted from string
values (Male and Female) to numerical values (0 and 1) to
allow the NN to process it, and the dataset was split into a
training and testing set at a ratio of 8:2.

3.2 Data preprocessing
3.2.1 PCA

Upon testing the optimal efficiency of the PCA algorithm,
we settled on using two principal components for data
reduction (n_components = 2). To reach this conclusion, we
varied n_components from 1-10, and two components were
found to be the most accurate for its time. The PCA module
was imported from the sklearn.decomposition library in
Python. All data reduction methods were carried out with
optimal parameters. PCA, for instance, used three layers to
get its best result: an input layer of 128 neurons, another
layer with 64 neurons, and a final layer with 3 neurons. All
layers used sigmoid activation with Adam as the
optimization function. In the end, the algorithm achieved a
96.6% accuracy in approximately 5 seconds, after 10 epochs.

3.2.2LDA

In addition to PCA, we also compared our results with LDA.
When testing the optimal LDA setup, we found that it
yielded the best results with 1 component (n_components =
1). Just like PCA, we experimented with various values of
n_components, and 1 was found to be the most efficient. The

modules for this test were found in the Python library
sklearn.discriminant_analysis. The algorithm used three
layers; the first had 64 neurons, the second had 12, and the
last was the output layer of 1 neuron. In addition, sigmoid
was also found to be the best activation function in this case,
along with adam as the optimization. In terms of loss
minimization, all three algorithms worked best with binary
cross-entropy. In the end, the final model hit a peak accuracy
0f 96.2% in 5.3 seconds.

3.2.3 Z-scores

Now comes the proposed method. To preprocess the data, we
first calculated the z-scores of data points. The next step was
to keep n values from both extremities of z-scores (omitting
and discarding values that are closer to the mean), with n
being the result of the equation:

_ _#of datapointso'gz
- 2

_ ceil(x""%)
2

The value of the exponent was found through trial and error,
and 0.92 was found to yield reliable accurate results. We had
planned on the exponent of the function being less than one,
to increase the percentage of data points taken the larger the
dataset was. We set a benchmark where datasets with
100,000 entries were to be shrunk to around a fifth of their
size, while datasets with one million points were reduced to
almost 15%. The result of this calculation would be divided
by two to take a total amount of n/2 data points, assuming a
normal distribution.

3.3 Structure of the NN model

As for the structure of our model, we used a Tensorflow
neural network with 5 layers. The output, first, second, third,
and fourth layers had 1, 8, 16, and 32 neurons respectively.
They were used alongside simple hyperparameter
optimization to test for optimal parameters, but this was
removed in the final algorithm. In doing so, we found the
initial training times and preprocessing times, in addition to
receiving and improving upon prediction accuracy (the last
layer was varied, and its results depended on the function).
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3.4 Training of the model

The training process was carried out using hyperparameter
optimization. This function went over several different
combinations of neurons, activation functions, and
optimizers. Let’s cover everything, beginning with the
activation functions. Activation functions allow neural
networks to convert complex, non-linearly separable input
data into potentially linearly separable representations [11].
The first function tested was the sigmoid function. It’s been
one of the most commonly used activation functions in the
past, along with tanh, or hyperbolic tangent. However,
sigmoid is relatively unreliable in some situations as it
saturates gradients, making it less reliable in certain
situations [12].

ReLU (rectified linear unit) was created to solve this
problem. ReLU's biggest advantage was that it solved the
sigmoid function’s vanishing gradient issue [13]. This issue
occurs because of the way sigmoid functions work; which is
squeezing inputs from a full range of numbers to a value
between zero and one. As the function is centered around
deriving inputs to return the gradient, these derivatives can
get quite small, meaning the gradient would slowly diminish.
Despite these problems, the sigmoid function was
experimentally proved to be the best fit for our dataset. Keep
in mind that dataset specifications could make the vanishing
gradient problem impertinent.

3.5 Parameter Comparisons

After repeated testing of all the algorithms that were to be
used, utilizing the hyperparameter optimization function
spoken about earlier, the parameters that yielded the best
results were the following:

No data reduction: sigmoid activation, 256 neurons, adam
optimization

Z-score method: sigmoid activation, 256 neurons, adam
optimization

PCA: sigmoid activation, 128 neurons, adam optimization
LDA: sigmoid activation, 64 neurons, adam optimization

Binary cross-entropy was used as the loss function for all
cases, as it was found to perform better than MSE (Mean
Squared Error) and MAE (Mean Absolute Error)

3.5 Post-result Findings

To prove the algorithm’s validity, we confirmed that the
data’s mean and variance remained unchanged upon
reduction, to ensure that the results were due to the

algorithm’s competency and not lucky classification of data.
Here is a comparison of the data before and after reduction:
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Both figures come from a scatterplot of the data made using
the Python matplotlib library.

As demonstrated by the figures, the more central data points
were successfully removed, with a marginal change in
forehead width mean. Upon further research, however, we
noticed that the initial method of selecting an equal number
of extremities was unfinished since it relied on a normal data
distribution, just like LDA. Thus, we tweaked the code to
identify the data distribution and take several points
proportional to the original.

In essence, the algorithm accommodated skewed
distributions by varying the number of outliers taken from
each side of z-scores. For example, if data points were
positively skewed, and three-quarters were less than the
mean, 75% of n points were taken from the lower extreme
z-scores and 25% from the upper extremities.

After running tests with the improved algorithm and
rerunning the tests, the mean forehead width had been

2024 Catalysing Research Institute



Journal of Computer Science, Catalysing Research Institute

Hadi Farah et al

adjusted slightly and was now more accurate than before
(from 13.08 to 13.14). After reduction, the new training
dataset was fed into the NN, with even more positive results;
the revised algorithm acquired a 97.9% accuracy in 3
seconds (using the same parameters as the previous
algorithms). In this way, the algorithm could now process
negatively and positively skewed datasets.

4. Results and Discussion
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The above figure displays a measure of the accuracy vs. the
time taken to run the algorithm.

In the end, all results were measured after the appropriate
hyperparameter optimization. In terms of hardware
specifications, all algorithms were run on Google Colab with
12.7 GB of RAM, 107.7 available GB of disk space, and an
Intel(R) Xeon(R) CPU @ 2.20GHz processor. Before any
reduction, the model reached a peak accuracy of 96.4% in 23
seconds. The results were pleasantly surprising after the
z-score filtering. In only 3 seconds of training, the model
achieved a peak accuracy of 97.9%, exceeding initial
expectations. Rather than the expected timesaving of around
60%, there was almost an 87% reduction in training time.
Comparing the Z-score method to PCA and LDA, PCA
yielded a 96.6% accuracy in 4.7 seconds, while LDA ended
with 96.2% accuracy in 5.3 seconds.

During testing, we faced many hurdles in preventing
overfitting and underfitting. Eventually, we found a balance
by using a simple, 3-hidden layer ANN with sigmoid
activation for the z-score method. Tests were repeated using
larger datasets with similar structures and results could be
seen in both cases. After testing, we noticed a potential
downfall of our function, since it was failing to classify
datasets with skewed distributions. To fix that problem, we
set out (in the Post-results Findings section) to resolve this
issue and ultimately came up with a function to calculate the
number of points above and below the mean. With the new
changes, the algorithm now took a specific percentage of

outliers from each extremity in proportion to the function’s
result. For example, if the function returned 45% of points
above the mean, the algorithm would take 45% of its outliers
from the upper extremities and 55% from the lower
extremities.

The most promising aspect of the algorithm is that it proved
capable of being both faster and more accurate than current
solutions in the field, rather than the tradeoff between speed
and accuracy that is expected by similar algorithms. With
more extensive research, the method proposed in this paper
could potentially become even faster and more accurate and
could be changed to accommodate diverse types and
distributions of datasets, or expanded to handle more than
two features at a time.

5. Conclusion

To conclude, we set out to find whether or not we could
develop a dataset reduction that could rival conventional
ones by using z scores. We were ultimately successful in
producing a simple model that could accurately and quickly
filter datasets, accurately filtering our dataset(s) in less than 5
seconds. After comparing our model with the LDA and PCA
models, we can conclude that our data reduction method is
more accurate and slightly faster than the two above, with
our algorithm being 1.7 seconds faster than PCA, the fastest
method, and 1.3% more accurate than PCA, the most
accurate method. We experimented with hyperparameter
optimization, and the results remained consistent.

This algorithm holds promise as it (so far) proves to be a
faster, more accurate way to process data. With all said and
done, this means that companies and firms that require large
amounts of data processed quickly (Amazon’s product filters,
for example) can use this method to process datasets where
other algorithms fall short. All in all, future research can still
be done, such as testing and improving the function’s ability
to accurately classify data from smaller datasets, and
comparing it to even more data reduction algorithms
commonly used to see where it stands.
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